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1. Supplementary Material
In this supplementary material, we discuss our approach

on generating the OmniHorizon dataset in Unreal Engine
4. We elaborate on the factors and certain assumptions that
we made in order to render the dataset. Additionally, we
discuss about training the UBotNet on indoor datasets and
architecture choices. Finally, we demonstrate additional re-
sults for depth and normal estimation from real-world im-
ages in the wild.

1.1. Depth clamping

Rendering engines such as Unreal Engine 4 work with
a larger depth range compared to that captured by physical
sensors. However, we were interested in exploring the range
of depth information that can be used for covering a wide
range of objects in outdoor scenarios. This motivated us to
simulate the limitations of the physical sensors and restrict
the depth range to 150 m, similar to the Fukuoka dataset [4].
The engine places the far plane at infinity, which results in
depth values being generated for extremely distant objects.
To avoid this, we modify the depth material to visualise the
impact of constraining the depth to a maximum specified
value. We show the results for the clamping of depth at a
range of 10m, 75m and 150m in Figure 2. At a depth of 10
m, only the truck is visible. When the depth range is raised
to 75 m, cars and building start to appear in the background.
At 150 m, the trees and most of the background are visible.
By limiting the depth in outdoor environments, it is possi-
ble to focus solely on nearby items, or, depending on the
application, on distant objects as well.

1.2. View-space vs world-space normals

The view space normals are calculated relative to the
camera orientation, whereas the world space normals are
calculated with respect to the global axes of the scene. The
normals in view space are desired when using a perspec-
tive camera as they are tied to the camera pose (extrinsic
parameters). However, the panoramic image is obtained by
rotating the camera on both the horizontal and vertical axis

in increments of fixed angle steps (5°), followed by merging
the multiple views.

(a) view-space normals (b) world-space normals

Figure 1. Comparison between view-space and world-space nor-
mals. The normals captured in view-space appear as gradient with
lack of clear distinction between the basis vectors. Normal maps
recorded in world-space follow a consistent coordinate system.

Since the coordinate system is relative to the camera in
view space, it also gets modified with the rotation. This re-
sults in a gradient of normals with no basis vectors. The nor-
mals obtained in world space are absolute and independent
of camera pose. Figure 1 shows the difference between the
view-space and world-space normals. Therefore, we cap-
tured the normals in world space as it was consistent for
both within and between the scenes. We show the conven-
tion used for the world-space normals in Figure 3.

1.3. Virtual Avatars

As discussed in main paper, we utilised Metahumans [3]
for the virtual avatars in the scene. We have used premade
MetaHumans available in the Quixel bridge. It allowed us to
bring in highly detailed characters and more diversity in the
pedestrians. But there were certain challenges while using
the Metahumans for the dataset. They are generated with
multiple level of details (LODs) for perfomance optimisa-
tion. As a result, there would be sudden popups and other
artifacts when the camera is approaching a character. Fig-
ure 4 illustrates how the character hair and details change
when the camera is approaching the character. Lower LOD
level (LOD 8) indicates lowest detailed polygon mesh with
no advanced features such as detail normal maps or hairs.
The higher LOD level (Level 0/1) has higher polygons with
extra detail maps for the skin and hair grooming system.
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Figure 2. Depth clamping experiment. Comparison between various depth ranges after clamping to a specific range: 10 m, 75 m and 150
m. Inverted depth maps are shown for better visualization.

Figure 3. Convention for the world-space normals.

Additionally, we also observed artifacts in the normal maps
for the characters with detailed grooming such as facial hair.
Figure 5 shows the issues with the normal maps of a char-
acter in the region with facial hair. For such characters we
used LOD 1 or LOD 2 to resolve the problems.

1.4. Assumptions in the Dataset

Our dataset renders several realistic outdoor and indoor
environments with dynamic scene components. While cu-
rating this dataset, we made certain assumptions especially
about the outdoor scenes which we list below:

1. The sky is assumed to be situated at infinitely large dis-
tance from the camera, and is represented as a spheri-
cal mesh of large radius encompassing the entire scene.
Additionally, normals are not rendered for the sky re-
gion. It is represent using black which indicates invalid
normal values. This allows us to distinguish sky from
other regions in the scene.

2. Transparent and transluscent materials such as water,
windows of the buildings and windshields of vehicles
are replaced with fully reflective materials. We ob-
served that inferring depth of such materials from color
images is challenging and this limitation, for example,
also applies to real-world datasets captured using li-
dars [6]. Figure 6 depicts the limitation of using trans-
parent and translucent materials in the dataset. The
original water shader in the scene was designed in such
a way that it acted as a see-through material in case of
depth. As a result, the depth map captures the terrain
hidden underneath the water surface. We modified the
the water shader to a reflective surface and thus depth

is correctly rendered as a planar surface. We observed
a similar case for the glass shader used for windows
in the vehicles. The vehicles indeed have detailed in-
doors but due to reflections on the glass, the inside is
not clearly visible. However, the depth map has much
cleaner view of the indoors. To avoid this conflict of
information, we use fully opaque and reflective mate-
rials for the windows.

2. UBotNet

UBotNet for Indoor datasets. In the main paper, we
discussed about the UBotNet architecture and the results
from training on the OmniHorizon dataset. We additonally
trained UBotNet on real-world indoor dataset Pano3D [1] to
validate the performance of the network on other datasets.
Pano3D is proposed as a modification of Matteport3D [2]
and Gibson3D [7]. We used the official splits provided by
the authors for Matterport3D for training and validation.
For, Gibson, we used the GibsonV2 Full Low Resolution
for training and validated on Matterport. All the images
used for training were of 512 x 256 resolution. We used the
loss function and training parameters outlined in our main
paper. We trained UBotNet Lite on the both the datasets for
60 epochs.

Table 1. Quantitative results for depth estimation using UBotNet
Lite validated on indoor dataset - Matterport3D.

Depth Error ↓ Depth Accuracy ↑
Dataset RMSE MRE RMSE log δ1 δ2 δ3

Matterport3D 0.639 0.142 0.064 0.817 0.952 0.981
Gibson 3D 0.591 0.154 0.061 0.830 0.965 0.986

Table 1 shows the quantitative results for the task of
depth estimation by UBotNet Lite evaluated on Matter-
port3D. We also show the qualitative results for the vali-
dation task in Figure 8. We observed better performance in
overall metrics and the visual results when the network is
trained on the Gibson3D.
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Figure 4. Dynamic LODs vs Constant LOD. a) The Dynamic LOD system loads different meshes with various level of details based on
the proximity to camera. This however results in sudden poping up of the meshes which generates artefacts in the data. b) Default LOD
settings used by the engine. c) The modified LOD system is used to maintain LODs at a fixed LOD so that the avatar’s appearance is
unaffected by distance. d) The LOD of the character is locked to 1 using Forced LOD.

Figure 5. Artefacts in normal maps for facial hairs. When the
camera is very close to the characters, the engine uses additional
detail meshes for characters with facial hair at the highest LOD
level (LOD 0). As a result, artefacts appear in the normal maps.We
use LOD 1 or 2 for such characters.

Absolute vs Relative positional encoding. We utilised
relative positional encoding [5] for self-attention in our pro-
posed UBotNet architecture. We compare it against the ab-
solute positional embeddings and show the quantitative re-
sults in Table 2. The absolute positional embeddings per-
form inferior to the relative positional embeddings used for
self-attention. Moreover, the differences are more promi-
nent in case of normal estimation. This is reaffirmed by the
visual differences shown in Figure 7. The network loses the
context required for learning the consistent representation
of the normals. It behaves similar to the UNet128 network
discussed in the main paper.

3. Addition Results

We show additional results on the real-world images in
the Figure 9 and Figure 10. The networks used were trained

purely on OmniHorizon.
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Figure 6. Assumptions for the dataset. a) Modification of water shader to achieve constant depth across the surface of the water. b)
Modification of glass shader into opaque reflective surface which hides the interior parts of the vehicles.

Figure 7. Comparison between Abs. and Rel. positional embedding. Absolute positional embedding loses the context required for learning
the normals when used for self-attention.

Table 2. Quantitative results for the comparison between the positional embedding used in the UBotNet architecture for self-attention. The
results for the Relative Positional Embedding are repeated from our main paper for the comparison.

Depth Error ↓ Depth Accuracy ↑ Normal Error ↓ Normal Accuracy ↑
Method RMSE MRE RMSE log δ1 < 1.25 δ2 < 1.252 δ3 < 1.253 Mean Median RMSE 5.0◦ 7.5◦ 11.25◦

Absolute Pos. Emb. 0.053 0.290 0.152 0.691 0.871 0.925 8.65 3.98 13.99 54.26 63.00 73.23
Relative Pos. Emb. 0.054 0.271 0.151 0.712 0.875 0.926 7.44 3.61 12.12 56.80 67.28 78.52
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Figure 8. Qualitative results for UBotNet Lite trained on Indoor datasets - Matterport3D and Gibson3D.

Figure 9. Depth and Normal estimation on real-world images in the wild. Comparison between all the networks discussed in main paper
for depth and normal estimation on real world images.

5



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#17351

CVPR
#17351

CVPR 2024 Submission #17351. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 10. Examples of depth and normal estimation using UBotNet on real-world images in the wild.
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